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We perform Monte Carlo type simulation studies of self-organization of microtubules interacting with
molecular motors. We model microtubules as stiff polar rods of equal length exhibiting anisotropic diffusion in
the plane. The molecular motors are implicitly introduced by specifying certain probabilistic collision rules
resulting in realignment of the rods. This approximation of the complicated microtubule-motor interaction by
a simple instant collision allows us to bypass the “computational bottlenecks” associated with the details of the
diffusion and the dynamics of motors and the reorientation of microtubules. Consequently, we are able to
perform simulations of large ensembles of microtubules and motors on a very large time scale. This simple
model reproduces all important phenomenology observed in in vitro experiments: Formation of vortices for
low motor density and raylike asters and bundles for higher motor density.

DOI: 10.1103/PhysRevE.77.051905 PACS number�s�: 87.16.Ka, 05.65.�b, 87.18.Hf

I. INTRODUCTION

Organization of complex networks of long biofilaments
such as microtubules and actin filaments in the course of
cellular processes and division is one of the primary func-
tions of molecular motors �1�. A number of in vitro experi-
ments were performed �2–7� to study the interaction of mo-
lecular motors and microtubules energized by the hydrolysis
of adenosine triphosphate in isolation from other biophysical
processes simultaneously occurring in vivo. The experiments
clearly demonstrated that at large enough concentration of
molecular motors and microtubules, the latter organize into
raylike asters and rotating vortices depending on the type and
concentration of molecular motors. These experiments
spurred numerous theoretical studies addressing various as-
pects of self-organization of active filament systems �8–17�.

The experiments �4–7� suggested the following qualita-
tive picture of motor-filament interaction. After a molecular
motor has bound to a microtubule at a random position, it
marches along it in a definite direction until it unbinds with-
out appreciable displacement of microtubules �since the size
of a molecular motor is small in comparison with that of the
microtubule�. However, if a molecular motor binds to two
microtubules �some molecular motors �e.g., kinesin� form
clusters with at least two binding sites�, it exerts significant
torques and forces, and can change the positions and orien-
tations of the microtubules significantly, leading eventually
to the onset of large-scale ordered patterns.

Small-scale molecular dynamics simulations were per-
formed to elucidate the nature of self-organization �4,5�. In
these simulations the microtubules were modeled by semi-
flexible rods diffusing in viscous fluids. Molecular motors
were correspondingly modeled by short stiff linear springs
with a large diffusion coefficient. Once the motor diffuses to
within a certain small distance from the intersection point of
two microtubules, it attaches to them with a certain probabil-
ity pon and marches along with velocity v. The action of the
motor is to exert forces and torques on the microtubules,
resulting in their mutual displacement and realignment.

Then, the motor detaches with a probability poff. To model
the dwelling effects of the motors on the end points of mi-
crotubules, observed for some types of molecular motors, an
additional probability pend to leave the end point was as-
signed. The corresponding typical dwelling time tend is of the
order 1 / pend. The simulations in �4,5� indeed reproduced cer-
tain features of the observed phenomenology, such as the
stability of patterns and transitions between vortices and as-
ters. However, in this approach many fundamentally differ-
ent time scales had to be simultaneously resolved computa-
tionally �e.g., fast diffusion of the motors and very slow
pattern formation�. As a result, the method is very CPU in-
tensive, and only a small number of microtubules were stud-
ied numerically, leaving many important questions, such as
the nature of the transition and structure of the phase dia-
gram, unanswered.

In Refs. �12,13� a continuum probabilistic model of align-
ment of microtubules mediated by molecular motors was de-
veloped. The theory was formulated in terms of a stochastic
master equation governing the evolution of the probability
density of microtubules with a given orientation at a given
location. The theory is based on a number of simple assump-
tions on the interaction rules between microtubules and mo-
lecular motors. In particular, only binary instant interactions
of microtubules called inelastic collisions are considered.
These are mediated by molecular motors in a two-
dimensional microtubule-motor mixture of constant motor
density. The motors are implicitly introduced into the model
by specifying the probability of interaction of intersecting
microtubules. Despite all of the above simplifications of the
biological process of self-organization of the cytoskeleton,
the model reproduced, on a qualitative level, key experimen-
tal observations, such as the onset of an oriented �polar�
phase above a critical density of motors, formation of asters
for large density of motors and vortices for lower density,
direct transition toward asters from the isotropic state for
large dwelling times of the motors at the end of microtu-
bules, and a density instability and the onset of bundle for-
mation at very high motor density.
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However, due to significant complexity of the derived sto-
chastic master equation governing the evolution of the prob-
ability density of microtubules, the analysis in Refs. �12,13�
was carried out in a relatively narrow range of parameters,
namely, in the vicinity of the orientational instability, which
allowed rigorous reduction of the stochastic master equation
to a set of much simpler amplitude or Ginzburg-Landau-type
equations for the local coarse-grained density and orientation
of microtubules. This approach yields some important in-
sights into the self-organization process, but, it obviously has
its own limitations.

In this paper we perform Monte Carlo type simulation
studies of self-organization of microtubules interacting with
molecular motors. Instead of modeling the self-organization
process in all details as was done in Refs. �4,5�, we use
simplified interaction rules suggested by our previous works
�12,13�. This simplification allows the elimination of fast
time scales associated with the diffusion and motion of the
motors. Consequently, one may focus on relevant time and
length scales associated with large-scale pattern formation
and evolution. We studied very large ensembles of microtu-
bules and addressed questions related to the structure of the
corresponding phase diagram and the transitions between
various patterns. In agreement with the early experiments,
we were able to reproduce asterlike structures for a high
motor density and vortices for a lower density, as well as
transitions to bundles. Our approach provides direct access to
the dynamics of the stochastic master equation and obtains
insights far beyond the amplitude equations approach. More-
over, our method provides an efficient and fast tool for the
simulation of a complex biological process of cytoskeleton
self-organization and can be possibly extended to rather dif-
ferent systems, such as anisotropic granular media and sys-
tems of self-propelled particles.

II. ESSENTIALS OF THE MODEL

We model microtubules as stiff polar rods of equal length
l exhibiting anisotropic diffusion in the plane. Diffusion of
the rod is characterized by three diffusion coefficients, diffu-
sion parallel to the rod orientation D�, perpendicular to its
orientation D�, and rotational diffusion Dr. In the following
we assume D� =2D� �18� for stiff rods diffusing in a viscous
fluid.

The key ingredient in the theory proposed in Refs. �12,13�
was the approximation of the complicated process of inter-
action of molecular motors with two microtubules by a
simple instant alignment process, see Fig. 1. We focus on the
two-dimensional situation, and describe the orientation of
microtubules by the planar angles �1,2. The microtubules be-
fore the collision possess initial angles �1,2

b . The action of the
molecular motor binding simultaneously to two microtubules
results in their mutual alignment, and the angles after inter-
action become

�1
a = �2

a =
�1

b + �2
b

2
. �1�

By analogy with the physics of inelastically colliding grains,
we call this kind of process fully inelastic collision �see, e.g.,

�19��. Such an inelastic collision is a simple and reasonable
approximation of the complicated interaction process �13�,
and is, in fact, an effect of simultaneous action of several
motors or motors and static cross linking polymers. An
analysis of the interaction of two stiff rods with one motor
shows that the overall change in the angle between the rods
is rather small: The angle decreases only by 25%–30% on
average �13,14�. However, simultaneous action of a static
cross link, serving as a hinge, and a motor moving along
both filaments results in a fast and complete alignment of the
filaments �20�. This justifies the assumption of fully inelastic
and instantaneous collisions for the rods’ interaction. Com-
plete alignment also occurs for the case of a simultaneous
action of two motors moving in the opposite directions, as in
the experiments with kinesin and NCD �gluththione-S-
transferase-nonclaret disjunctional fusion protein� mixtures
�5�. The same is true of two motors of the same type moving
in the same direction but with different speeds, where the
variation in speed is due to the variability of motor properties
and the stochastic character of the motion.

The motor concentration m affects the probability of in-
teraction Pint between two microtubules in a given period of
time �t. On scales larger than the microtubule length �the
“macroscopic scale”� the mean concentration of motors m̄ is
assumed to be constant. This simplifying assumption is jus-
tified by a strong motor diffusion Dm compared to the micro-
tubule diffusion, Dm�20 �m2 /s�500D�.

Locally, on the “microscopic scale,” the motor density
deviates from the mean density m̄ due to the advection of the
motors along the microtubules so that motors are more likely
to be found near the microtubules’ polar ends �e.g., positive
end for conventional kinesin�. In particular, in the ordered
phase this leads to motor accumulation at the centers of as-
ters and vortices �see, e.g., �5,7��. This accumulation is likely
more pronounced for NCD-type motors in Ref. �5� than for
kinesin-type motors due to a larger dwelling time of the
former on the ends of microtubules. While the accumulation
of motors at the centers of asters and vortices also produces
large-scale inhomogeneities of the motor distribution �i.e.,
deviations from a constant in m̄�, for the sake of simplicity
we neglect these effects in our algorithm. There is some evi-
dence that such large-scale inhomogeneities have only a
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FIG. 1. �Color online� Schematics of an alignment event �inelas-
tic collision� between two microtubules interacting with multi-
headed molecular motors. �a� A multiheaded molecular motor clus-
ter attached at the intersection point of microtubules moves from
the positive �+� toward the negative �−� end of the microtubules. �b�
After the interaction, the orientational angles �1,2 and the corre-
sponding positions of the midpoints R1,2 become aligned.
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quantitative and no qualitative effect on the dynamics. In
particular, the morphology of the phase transition diagram
based on the amplitude equations �see �12,13�� is unaltered
by the introduction of the macroscopic motor density varia-
tions.

The local motor density inhomogeneity affects the align-
ment rate in several ways, generally enhancing the probabil-
ity of alignment for the rods intersecting near their positive
ends for kinesin or negative ends for NCD motors �12,13�.
To account for this, we assume that the interaction probabil-
ity Pint depends on the position of the intersection point, see
Fig. 1. The intersection position is indicated by the signed
distance s1,2, − l

2 �s1,2�
l
2 , from the midpoint of each rod.

The dependence of the interaction probability on the in-
tersection �and, consequently, the attachment position� re-
sults in anisotropic interactions, corresponding to the aniso-
tropy of the probability kernel in the collision integral of the
master equation in �12,13�. This anisotropy is characterized
by the parameter �, ranging between −1 and 1, and is best
quantified by the motor dwelling time tend, which is small for
kinesin-type motors and large for NCD-type motors.

The reason that tend is the controlling parameter for aniso-
tropy is that larger dwelling times entail higher motor accu-
mulation, by blockading subsequent motors near the tubule’s
end. Furthermore, by keeping the rods in an intersection con-
figuration longer enhanced the probability of multiple cross-
linking and, hence, a higher probability and a greater degree
of alignment.

In Ref. �13� the relation between the kernel anisotropy �
and the motor dwell time at the end of the microtubule tend
in the limit of tend�1 was estimated as follows: ���v
−const / tend� / poff, where v is the motor speed, poff is the mo-
tor unbinding rate. Thus, one sees that � increases with the
increase in tend. In contrast, the motor attachment rate pon has
little effect on the kernel anisotropy, in agreement with ex-
periments �4,5,7�. As was shown in Refs. �12,13�, the aniso-
tropy parameter controls the transition between asters and
vortices; in the continuum model no vortices were observed
for large values of the kernel anisotropy.

In order to accommodate the discussed anisotropy effects
in our model we introduce the following dependence of the
interaction probability on the attachment positions:

Pint = P0�1 + �
s1 + s2

l
	 . �2�

Here P0=Cm̄�2�t, which encodes the aforementioned de-
pendence of the interaction probability on the macroscopic
motor concentration m̄, the interaction cross section �, and
the elapsed time �t �C is a constant�. The value of �
�30–50 nm is the order of size of a kinesin-type molecular
motor. Since � is a fixed physical parameter, and �t is fixed
throughout our simulations �see below�, the range of param-
eter values 0	 P0�0.5 reflects different values of the uni-
form coarse-grained motor concentration m̄. The value �and
the sign� of the other parameter, �, depends on the type of
motor. We believe that this generic linear dependence on the
distances s1,2 captures the qualitative effects of the kernel
anisotropy. Our experiments with different dependencies of

the probability Pint on s1,2 yielded qualitatively similar re-
sults.

After the interaction we postulate that not only the angles,
but also the midpoint positions of the microtubules R1,2, co-
incide

R1
a = R2

a =
R1

b + R2
b

2
. �3�

This approximation is reasonable in the case of large dwell-
ing times tend of the motors, which guarantees that after the
interaction the end points of the microtubules will coincide.
Then, together with the alignment interaction, this effect will
justify the assumption on the alignment of the midpoints as
well. A large value of the dwelling time tend is a reasonable
approximation for NCD motors; however, tend is small for
kinesin-type motors. As we will show later, the midpoint
alignment assumption may produce under some conditions
specific effects, such as layering of the microtubules, or
“smectic ordering” �21�. In our future work we plan to intro-
duce more realistic rules for the midpoint displacements.

III. ALGORITHM DESCRIPTION

We performed simulations on a two-dimensional square
domain with periodic boundary conditions. Initially, micro-
tubules are randomly distributed over the domain. At each
time step �e.g., from tn to tn+1�, the update of the positions
and orientations of the microtubules is comprised of one sub-
step processing anisotropic diffusion and one substep pro-
cessing inelastic collision. The total time-step size was set at
�t=0.1.

The diffusion of rigid rods in a viscous fluid is character-
ized by three diffusion coefficients: parallel D�, perpendicu-
lar D�, and rotational Dr. We used the following relations
between the diffusion coefficients from Kirkwood’s theory
for polymer diffusion in three dimensions: D� =2D�, Dr

= c
l2 D�. We used c=1.5 and l=0.5 in our simulation �22�. The

“diffusion substep” is introduced as an anisotropic random
walk of the microtubules’ center position R= �x ,y� and ran-
dom rotation of its orientation �. The positions and orienta-
tions are updated at each such substep as follows:

Rn+1 = Rn + 
1��Un + 
2��Nn,

�n+1 = �n + 
3�r, �4�

where 
i� �−0.5,0.5� are three uniform random numbers
generated each time, and �i=
24Di�t, where Di is either
D�,D� or Dr, and vectors Un= �cos �n , sin �n�, Nn
= �−sin �n , cos �n� are directed along �U� and perpendicular
�N� to the orientation of the microtubule. The factor 24 in the
expression for �i ensures that the effective diffusion has the
correct value of Di based on the variance of 
i.

At the “collision step,” after diffusion, we check whether
any pairs of microtubules intersect, and if so we locate the
intersection points of the microtubules and assign an interac-
tion probability to those pairs according to �2�. In all of those
intersections, some of them are simple binary intersections,
but others may be multiple intersections, that is, a microtu-
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bule intersecting with more than one other microtubule. Cer-
tainly, at a low density of microtubules binary collisions are
more typical. Regardless of whether intersections are binary
or multiple, we calculate all interaction probabilities and sort
them in descending order. Starting with the greatest Pint, we
compare it with a randomly generated number 
4� �0,1�. If
Pint�
4, then we update that pair of microtubules according
to the collision rules, Eqs. �1� and �3�. If either of these two
microtubules have other intersections, they are ignored, that
is, these interaction probabilities are set to zero. We then
proceed with the next largest interaction probability, repeat-
ing until all have been acted upon. Note that the diffusive
substep size coincides with the total time-step size, so that
collisions are assumed to take place instantaneously.

Coarse-grained variables. In our simulations, the rods
move freely within the domain and with fluctuations in both
position and orientation of the rods, it is difficult to identify
relatively stable patterns. For this reason, and as an aid for
computing divergence and curl, we impose a square grid on
the domain with the mesh length d and introduce a coarse-
graining procedure to extract observable values, such as the
local orientation � and local density 
. Using W to denote
the two-dimensional position vector of a grid point �Xi ,Y j�,
we calculate the number of rods N whose midpoint positions
are in the box �Xi−d ,Xi+d�� �Y j −d ,Y j +d�. The following
coarse-grained functions are employed to compute � and 
 at
this grid point �Xi ,Y j�:

��W� =

�
k=1

N

���W − Rk��Uk


�
k=1

N

���W − Rk��Uk
 ,


�W� = N . �5�

Here �¯ � is Euclidean length and � is a weighting function.
We take

��s� = e−s2/l2, �6�

where l is chosen to be the length of each microtubule. In the
simulation we also must include contributions from “image
particles” originating from the periodic boundary conditions.

IV. SIMULATION RESULTS

We applied our model to 6000 microtubules in a 20�20
domain varying parameters P0 and � in a wide range with
7000 time steps in the simulation for each choice of �P0 ,��.
We impose a 40�40 grid on the domain to calculate the
coarse-grained field. A snapshot was taken every 10 itera-
tions and so 700 snapshots were obtained for each simulation
process. For most of the parameter values chosen, it took
about 300 snapshots �3000 time steps� to relax toward rela-
tively stable large scale patterns, and more than 500 snap-
shots �5000 steps� to become stationary. The movies illustrat-
ing typical simulation results can be found in �23�. Some
simulations clearly showed a pattern of asters and/or vortices
while others resulted in ambiguous patterns. Moreover, the
clear-cut distinction between asters and vortices appears to
be difficult because of fluctuations. To examine the param-
eter space �P0 ,�� where there are transition regions between
asters and vortices, we have devised a pattern characteriza-
tion scheme. The simulation results obtained from the first
4000 iterations were ignored as they represent transient
states. The details of the pattern characterization procedure
are presented in the Appendix.

Select simulation results are shown in Figs. 2–4 where
D� =1 /120 in all simulations. In agreement with the experi-
ments �4,5� and the theoretical models �12,13�, we obtained
an isotropic phase for low motor densities �not shown�, and
then vortices, transient aster-vortices �structures which re-
semble vortices near the core and aster far from the core�,
asters, and bundles with gradual increase of the motor den-
sity. Representative snapshots of the rod configurations for
three different values of the motor density P0 are shown in
Fig. 2 and the two corresponding coarse-grained snapshots of
them superimposed with the rod density field are shown in
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FIG. 2. �Color online� Snapshots illustrating configuration of 6000 rods for different motor densities, i.e., different values of P0. Arrows
represent microtubules, circles depict the cores of vortices or asters. �a� Vortices, t=620, �=1.0, P0=0.08 �low motor density�; �b� asters,
t=602, �=0.95, P0=0.10 �high motor density�; �c� bundles, t=400, �=1.0, P0=0.15. See also �23� for movies Nos. 1 and 2 illustrating the
self-organization process.
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Fig. 3. As is evident from our simulation results, a transition
from an isotropic �disordered� phase to an oriented phase
happens with the increase in the motor density characterized
by the parameter P0. While due to the small size of the
system �only 6000 particles� we have very strong fluctua-
tions in the number of vortices, asters and antiasters �struc-
tures similar to asters but with the opposite orientation of
microtubules; see Fig. 4�, a general trend can be identified:
With the increase in the interaction probability P0 the aver-
age number of vortices decreases while the number of aster
increases. For small values of the anisotropy parameter �,
asters and antiasters appear to occur with equal probability.
However, with the increase in � the number of antiasters

rapidly decreases while the number of asters increases. For
very high motor densities we observed an additional instabil-
ity resulting in the formation of dense bundles of filaments
with the same orientation �see Fig. 2�c��. The bundles are
also associated with a certain layering �smectic ordering� of
the filaments. This ordering is due to the microscopic inter-
action law which results in the alignment of the rod mid-
points as in Eq. �3�. While this might be the case for the
NCD motors with a large dwelling time, for the kinesin mo-
tors the bundles may have a different structure which is not
necessarily captured by these simulations. These results are
in good agreement with earlier theoretical predictions
�12,13�.

The phase diagram delineating various regimes of self-
organization is shown in Fig. 5. It bears a strong resemblance
to the experimental observations �4,5� and the theoretical
model of Refs. �12,13�. While the boundaries are quite
blurred due to strong fluctuations �see Fig. 4�, there is a
transition from vortices to asters with the increase of the
interaction rate P0 �24�. Moreover, the domain of stability of
vortices decreases with the increase of the anisotropy param-
eter � related to the dwell time of the motors, as observed
experimentally and in agreement with the continuum model
of Refs. �12,13�. However, we need to emphasize that all the
boundaries shown in Fig. 5 are rather blurred; instead of
sharp phase transitions we observed only smooth crossovers
between different regimes due to strong fluctuations and a
relatively small number of particles in the system �25�.

The coarse graining allows for easier identification of as-
ter and vortex structures �see Fig. 3�. In the movies made
using coarse-grained fields we are able to follow the forma-
tion, interaction, and evolution of asters and vortices. A typi-
cal scenario of the dynamical evolution of the system is that
small vortices and asters can coalesce to form a larger vortex
or aster �see the movies in �23� for parameters P0=0.12, �
=1.0�. In accordance with the experiments, vortices have
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FIG. 3. �Color online� Coarse-grained images corresponding to parameters of Fig. 2 for vortices �a� and asters �b�. Arrows represent the
orientation field �. The color �gray levels� shows the density 
, red �bright� corresponds to the maximum of 
, and blue �dark� to its
minimum. See also �23� for movies Nos. 3 and 4.
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FIG. 4. �Color online� Averaged number of asters �squares�, an-
tiasters �diamonds�, and vortices �circles� as a function of the inter-
action probability P0 for two different values of parameter �. The
data for �=0.35 are shown with dashed lines, open symbols, and
for �=0.95 are shown with dotted lines, closed symbols.
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suppression of the microtubule density in the center �holes�
and asters lead to an increase of the density of microtubules.
We have also observed the transformation of vortices into
asters in the course of the simulations, likely due to fluctua-
tion and finite size effects.

We followed the trajectory of individual rods in the vicin-
ity of the vortex core in the steady state. We have found that
the particles generally do not rotate around the vortex core.
This stems from the fact that in our binary collision algo-
rithm the center of mass of two interacting rods is not dis-
placed in the course of collision, Eq. �3�. This restriction
suppresses directed motion of the rods, and, consequently,
global rotation. Thus, the rotation of microtubules seen in
experiment �4� is likely related to the interaction with the
substrate or the boundary of the container �13,17�, or, possi-
bly is related to multiparticle interactions and anisotropic
interaction with the fluid �11� neglected in our model.

In our simulations we also observed that the centers of the
asters typically exhibit a drift, reminiscent to the acceleration
instability of aster cores predicted in Ref. �13�. This phenom-
enon especially appears at the stage of formation of asters.
However, the precise nature of the drift is still an open ques-
tion since it could be also due to fluctuation effects.

V. CONCLUSION

In this paper we developed a Monte Carlo type stochastic
approach to the study of self-organization of microtubules
mediated by molecular motors. The approach allows us to
bypass the fast time scales associated with the diffusion and
the motion of individual molecular motors and concentrates
on the relevant features of the long-time and large-scale be-
haviors associated with the self-organization phenomena.

While a direct comparison with the earlier algorithms in-
troduced in Ref. �7� is not always possible due to the differ-
ent nature of the approximations, some rough estimates are
useful. The total simulation time reported in Ref. �7� was

1500 s. The characteristic time scale of the simulations of the
order of 1 s can be inferred from the density of microtubules
�about 0.05 �m−2, or about 500 microtubules in a box 100
�100 microns� and the motor diffusion �D=20 �m2 /s�,
which roughly corresponds to 103 dimensionless units of
time. Our simulations �26�, with much higher number of mi-
crotubules �6000� and in bigger boxes, were performed for
about 1000 dimensionless time units, that is, about the same
order of magnitude as in Refs. �4,7�.

Our method can be easily adapted to new experimental
settings, such as a motor and microtubule system with a frac-
tion of the motors permanently bound to the substrate �17�.
Our results are complementary to the analytical studies of
self-organization in the framework of amplitude equations
derived from the stochastic master equations, and provide
valuable tests for a variety of phenomenological continuum
theories of cytoskeleton formation �8–11,16�. Moreover, our
simulations shed light on the microscopic details of self-
organization not available in the continuum formulation. We
anticipate that somewhat similar approaches can be applied
to a broad range of systems, such as networks of actin fila-
ments interacting with myosin motors �6�, patterns emerging
in granular systems with anisotropic particles �27–31�, and
systems of self-propelled objects �32–34�.
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APPENDIX: PATTERN CHARACTERIZATION

We computed the discrete divergence, �=� ·�, and the
curl, �=���, of the coarse-grained field of the pattern from
the last 3000 iterations. Here � and � depend on the mesh
size of the coarse-grained field. By using the central differ-
ence scheme, the extrema of � and � can be −4 or 4 for an
ideal aster or vortex under the 40�40 grid on the 20�20
domain.

The basic idea for pattern characterization is that an aster
would have its local divergence greater or less than a thresh-
old value at the center. Similar observations apply to a vortex
and its curl. To realize the pattern characterization, we imple-
mented the following procedures:

�i� First, using the snapshot at t=700, determine the local
extrema of � and � with values sufficiently far from zero.
Specifically,

�1� compute the minimal value of the divergence �. Sup-
pose that it occurs at �i , j�;

�2� eliminate the surrounding square area consisting of
�2q+1�� �2q+1� mesh points. We choose q=4 in our com-
putation, that is, temporarily set ��k , l�=0, i−4�k� i
+4, j−4� l� j+4. Locate the next minimal value of �
from the remaining region;
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FIG. 5. �Color online� Phase diagram of various regimes as the
function of the motor density P0 and the anisotropy parameter �.
The disordered region is blue �black� here; the vortex region is
green �gray�; the transition from vortex to aster happens at the yel-
low region �white�; and red �dark gray� denotes aster regions. The
dashed line denotes the boundary where the rods become bundled.
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�3� repeat step �2� on the remaining region until �
�−2.5;

�4� use the above three steps to find the maxima of � with
��2.5;

�5� go through steps �1�–�3� to locate the local minima of
� with �	−2.5;

�6� apply a similar procedure to find local maxima of �
with ��2.5;

�7� if two of the selected extrema of ��� and ��� occur in
one of the selected squares, then we discard the square that is
not centered at a point where the greater of ��� and ��� oc-
curs.

�ii� Second, take the local square area consisting of �2q
+1�� �2q+1� mesh points for each of the extracted loca-
tions, and compute four quantities, �min, �max, �min and �max
in this patch for each snapshot from t=401 to t=700.

�iii� Third, compute the time averages of those four
quantities for each patch from these 300 snapshot values, de-

noted as �̄min= 1
300�i=1

300��min�i��, �̄max= 1
300�i=1

300�max�i�, �̄min

= 1
300�i=1

300��min�i��, and �̄max= 1
300�i=1

300�max�i�. To distinguish
between a vortex and an aster, we introduced an additional
parameter �=0.6, whose use is explained below.

�iv� Finally, to determine the type of pattern in each local
square area, according to the following criteria, we decide

�a� if �̄min�3.0, �̄max	3.0, �̄min	3.0, and �̄max���̄min,
it is an aster;

�b� if �̄min�3.0, �̄max�3.0 ��̄min�3.0�, �̄min���̄min
��̄max���̄min�, and �̄max���̄min, it is an intermediate form
between an aster and a vortex and we assign it an aster-
vortex pattern;

�c� if �̄max�3.0, �̄max	3.0, �̄min	3.0, and �̄min
���̄max, the directions of the rods point outward and it is an
antiaster pattern;

�d� if �̄max�3.0, �̄max�3.0 ��̄min�3.0�, �̄min���̄max
��̄max���̄max�, and �̄min���̄max, it is an antiaster-vortex
pattern;

�e� if �̄min	3.0 and �̄max	3.0 and �̄min�3.0 ��̄max
���̄min� or �̄max�3.0 ��̄min���̄max�, then it is a vortex
pattern;

�f� in any other case, it is isotropic.
The parameter space �P0 ,�� is in the range 0.01� P0

�0.15 and 0.0���1.0. We made a grid with step sizes
�P0=0.01 and ��=0.05 so that we had 15�21=315 mesh
points. For each pair of values, we used three different initial
conditions for the simulations, using the characterization of

the final states described above. We obtained the numbers of
asters Na, aster vortices Nav, antiasters Naa, antiaster vortices
Naav, and vortices Nv for each �P0 ,�� and we found that
Naa=0 and Naav=0. At each parameter grid point we com-
puted two values according to the following formulas:

Ma�i, j� =
1

N1
�
i−1

i+1

�
j−1

j+1

�Na + Naa� , �A1�

Mv�i, j� =
1

N1
�
i−1

i+1

�
j−1

j+1

�Nv� . �A2�

For the boundary points, the summations in �A1� and �A2�
are taken only over the neighboring points around �i , j�
within the parameter domain. N1 in �A1� and �A2� is the
number of points in the summation. From Ma�i , j� and
Mv�i , j�, we calculated �a�i , j�=

Ma�i,j�
Ma�i,j�+Mv�i,j� and �v�i , j�

=
Mv�i,j�

Ma�i,j�+Mv�i,j� . Finally we generated a matrix, Ip, whose en-
tries give the pattern information at that parameter point.

�i� If 1
3 �Ma�i , j�+Mv�i , j���1.5, then it belongs to a dis-

ordered region and Ip�i , j�=−1.0.
�ii� If �a�i , j��0.6 and �v�i , j��0.4, then it belongs to an

aster region and Ip�i , j�=1.0.
�iii� If �a�i , j��0.4 and �v�i , j��0.6, then it belongs to a

vortex region and Ip�i , j�=0.0.
�iv� Otherwise, it belongs to a transition region and

Ip�i , j�=0.5.
We used the Ip matrix to produce a pseudocolor phase

diagram. The pixels with Ip�i , j�=1 are assigned red, the pix-
els with Ip�i , j�=0.5 are assigned yellow, the pixels with
Ip�i , j�=0.0 are assigned green, and the pixels with Ip�i , j�
=−1.0 are assigned blue.

To identify the bundled region, we calculated the density
of the rods at each grid point, which is defined as the number
of rods whose positions are in the square box with the
grid point as the center. Next we computed the global mini-
mal and maximal density in the domain at each time slice.
Those minimal and maximal densities were averaged over
300 slices and then over three samples, i.e., 
̄min

= 1
3�1

3� 1
300� j=1

300
min�j��, 
̄max= 1
3�1

3� 1
300� j=1

300
max�j��. If 
̄min
	0.2 and 
̄max�60, then this point is marked bundled. In the
bundled region the rods formed several, with these stripes
sometimes forming concentric circles. Moreover, asters ap-
pear to dominate vortex structures.
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